Una función cuadrática es aquella que puede escribirse como una ecuación de la forma:
Una función cuadrática es aquella que puede escribirse como una ecuación de la forma:
f(x) = ax 2 + bx + c
donde a , b y c (llamados términos ) son números reales cualesquiera y a es distinto de cero (puede ser mayor o menor que cero, pero no igual que cero). El valor de b y de c sí puede ser cero .
En la ecuación cuadrática cada uno de sus términos tiene un nombre.
Así,
ax 2 es el término cuadrático
bx es el término lineal
c es el término independiente
donde a , b y c (llamados términos ) son números reales cualesquiera y a es distinto de cero (puede ser mayor o menor que cero, pero no igual que cero). El valor de b y de c sí puede ser cero .
En la ecuación cuadrática cada uno de sus términos tiene un nombre.
Así,
ax 2 es el término cuadrático
bx es el término lineal
c es el término independiente
Representación gráfica de una función cuadrática
Si pudiésemos representar en una gráfica "todos" los puntos [x,f(x)] de una función cuadrática , obtendríamos siempre una curva llamada parábola .
Como contrapartida, diremos que una parábola es la representación gráfica de una función cuadrática .
Dicha parábola tendrá algunas características o elementos bien definidos dependiendo de los valores de la ecuación que la generan.
Estas características o elementos son:
Orientación o concavidad (ramas o brazos)
Puntos de corte con el eje de abscisas (raíces)
Punto de corte con el eje de ordenadas
Eje de simetría
Vértice
Orientación o concavidad
Una primera característica es la orientación o concavidad de la parábola. Hablamos de parábola cóncava si sus ramas o brazos se orientan hacia arriba y hablamos de parábola convexa si sus ramas o brazos se orientan hacia abajo.
Esta distinta orientación está definida por el valor (el signo) que tenga el término cuadrático (la ax 2 ) :
Si a > 0 (positivo) la parábola es cóncava o con puntas hacia arriba, como en f(x) = 2x 2 − 3x − 5
Si a < 0 (negativo) la parábola es convexa o con puntas hacia abajo, como en f(x) = −3x 2 + 2x + 3
Además, cuanto mayor sea |a| (el valor absoluto de a), más cerrada es la parábola.
Si pudiésemos representar en una gráfica "todos" los puntos [x,f(x)] de una función cuadrática , obtendríamos siempre una curva llamada parábola .
Como contrapartida, diremos que una parábola es la representación gráfica de una función cuadrática .
Dicha parábola tendrá algunas características o elementos bien definidos dependiendo de los valores de la ecuación que la generan.
Estas características o elementos son:
Orientación o concavidad (ramas o brazos)
Puntos de corte con el eje de abscisas (raíces)
Punto de corte con el eje de ordenadas
Eje de simetría
Vértice
Orientación o concavidad
Una primera característica es la orientación o concavidad de la parábola. Hablamos de parábola cóncava si sus ramas o brazos se orientan hacia arriba y hablamos de parábola convexa si sus ramas o brazos se orientan hacia abajo.
Esta distinta orientación está definida por el valor (el signo) que tenga el término cuadrático (la ax 2 ) :
Si a > 0 (positivo) la parábola es cóncava o con puntas hacia arriba, como en f(x) = 2x 2 − 3x − 5
Además, cuanto mayor sea |a| (el valor absoluto de a), más cerrada es la parábola.
Puntos de corte en el eje de las abscisas (Raíces o soluciones) (eje de las X)
Otra característica o elemento fundamental para graficar una función cuadrática la da el valor o los valores que adquiera x , los cuales deben calcularse.
Ahora, para calcular las raíces (soluciones) de cualquier función cuadrática calculamos
f (x) = 0 .
Esto significa que las raíces (soluciones) de una función cuadrática son aquellos valores de x para los cuales la expresión vale 0; es decir, los valores de x tales que y = 0 ; que es lo mismo quef(x) = 0 .
Entonces hacemos
ax² + bx +c = 0
Como la ecuación ax² + bx +c = 0 posee un término de segundo grado, otro de primer grado y un término constante, no podemos aplicar las propiedades de las ecuaciones, entonces, para resolverla usamos la fórmula:
Entonces, las raíces o soluciones de la ecuación cuadrática nos indican los puntos de intersección de la parábola con el eje de las X (abscisas) .
Respecto a esta intersección, se pueden dar tres casos:
Que corte al eje X en dos puntos distintos
Que corte al eje X en un solo punto (es tangente al eje x)
Que no corte al eje X
Esta característica se puede determinar analizando el discriminante , ya visto en las ecuaciones cuadráticas .
Otra característica o elemento fundamental para graficar una función cuadrática la da el valor o los valores que adquiera x , los cuales deben calcularse.
Ahora, para calcular las raíces (soluciones) de cualquier función cuadrática calculamos
f (x) = 0 .
Esto significa que las raíces (soluciones) de una función cuadrática son aquellos valores de x para los cuales la expresión vale 0; es decir, los valores de x tales que y = 0 ; que es lo mismo quef(x) = 0 .
Entonces hacemos
ax² + bx +c = 0
Como la ecuación ax² + bx +c = 0 posee un término de segundo grado, otro de primer grado y un término constante, no podemos aplicar las propiedades de las ecuaciones, entonces, para resolverla usamos la fórmula:
Entonces, las raíces o soluciones de la ecuación cuadrática nos indican los puntos de intersección de la parábola con el eje de las X (abscisas) .
Respecto a esta intersección, se pueden dar tres casos:
Que corte al eje X en dos puntos distintos
Que corte al eje X en un solo punto (es tangente al eje x)
Que no corte al eje X
Esta característica se puede determinar analizando el discriminante , ya visto en las ecuaciones cuadráticas .
No hay comentarios:
Publicar un comentario