viernes, 25 de agosto de 2017

Matemática: Función Cuadrática-5to Unica 2017

Una función cuadrática es aquella que puede escribirse como una ecuación de la forma:

f(x) = ax + bx + c

donde (llamados términos ) son números reales cualesquiera y es distinto de cero (puede ser mayor o menor que cero, pero no igual que cero). El valor de y de sí puede ser cero .
En la ecuación cuadrática cada uno de sus términos tiene un nombre.
Así,
ax es el término cuadrático
bx es el término lineal
es el término independiente

Representación gráfica de una función cuadrática

Si pudiésemos representar en una gráfica "todos" los puntos [x,f(x)] de una función cuadrática , obtendríamos siempre una curva llamada parábola .
Como contrapartida, diremos que una parábola es la representación gráfica de una función cuadrática .
Dicha parábola tendrá algunas características o elementos bien definidos dependiendo de los valores de la ecuación que la generan.
Estas características o elementos son:
Orientación o concavidad (ramas o brazos)
Puntos de corte con el eje de abscisas (raíces)
Punto de corte con el eje de ordenadas
Eje de simetría
Vértice
Orientación o concavidad
Una primera característica es la orientación concavidad de la parábola. Hablamos de parábola cóncava si sus ramas o brazos se orientan hacia arriba y hablamos de parábola convexa si sus ramas o brazos se orientan hacia abajo.
Esta distinta orientación está definida por el valor (el signo) que tenga el término cuadrático (la ax :
Si  a > 0 (positivo) la parábola es cóncava o con puntas hacia arriba, como en f(x) = 2x − 3x − 5
Si  a < 0 (negativo) la parábola es convexa o con puntas hacia abajo, como en f(x) = −3x + 2x + 3


Además, cuanto mayor sea |a| (el valor absoluto de a), más cerrada es la parábola.

Puntos de corte en el eje de las abscisas (Raíces o soluciones) (eje de las X)

Otra característica o elemento fundamental para graficar una función cuadrática la da el valor o los valores que adquiera , los cuales deben calcularse.
Ahora, para calcular las raíces (soluciones) de cualquier función cuadrática calculamos
f (x) = 0 .
Esto significa que las raíces (soluciones) de una función cuadrática son aquellos valores  de x para los cuales la expresión vale 0; es decir, los valores de x tales que y = 0 ; que es lo mismo quef(x) = 0 .
Entonces hacemos
ax² + bx +c = 0
Como la ecuación ax² + bx +c = 0 posee un término de segundo grado, otro de primer grado y un término constante, no podemos aplicar las propiedades de las ecuaciones, entonces, para resolverla usamos la fórmula:
Entonces, las raíces o soluciones de la ecuación cuadrática nos indican los puntos de intersección de la parábola con el eje de las X (abscisas) .
Respecto a esta intersección, se pueden dar tres casos:
Que corte al eje X en dos puntos distintos
Que corte al eje X en un solo punto (es tangente al eje x)
Que no corte al eje X
Esta característica se puede determinar analizando el discriminante , ya visto en las ecuaciones cuadráticas .

No hay comentarios:

Publicar un comentario